Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation.

Identifieur interne : 000E04 ( Main/Exploration ); précédent : 000E03; suivant : 000E05

TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation.

Auteurs : Brad J. Niles [États-Unis] ; Amelia C. Joslin [États-Unis] ; Tara Fresques [États-Unis] ; Ted Powers [États-Unis]

Source :

RBID : pubmed:24462291

Descripteurs français

English descriptors

Abstract

Reactive oxygen species (ROS) are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2)/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.

DOI: 10.1016/j.celrep.2013.12.040
PubMed: 24462291
PubMed Central: PMC3985744


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation.</title>
<author>
<name sortKey="Niles, Brad J" sort="Niles, Brad J" uniqKey="Niles B" first="Brad J" last="Niles">Brad J. Niles</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Joslin, Amelia C" sort="Joslin, Amelia C" uniqKey="Joslin A" first="Amelia C" last="Joslin">Amelia C. Joslin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fresques, Tara" sort="Fresques, Tara" uniqKey="Fresques T" first="Tara" last="Fresques">Tara Fresques</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA. Electronic address: tpowers@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24462291</idno>
<idno type="pmid">24462291</idno>
<idno type="doi">10.1016/j.celrep.2013.12.040</idno>
<idno type="pmc">PMC3985744</idno>
<idno type="wicri:Area/Main/Corpus">000F00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F00</idno>
<idno type="wicri:Area/Main/Curation">000F00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F00</idno>
<idno type="wicri:Area/Main/Exploration">000F00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation.</title>
<author>
<name sortKey="Niles, Brad J" sort="Niles, Brad J" uniqKey="Niles B" first="Brad J" last="Niles">Brad J. Niles</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Joslin, Amelia C" sort="Joslin, Amelia C" uniqKey="Joslin A" first="Amelia C" last="Joslin">Amelia C. Joslin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fresques, Tara" sort="Fresques, Tara" uniqKey="Fresques T" first="Tara" last="Fresques">Tara Fresques</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA. Electronic address: tpowers@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell reports</title>
<idno type="eISSN">2211-1247</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acids (metabolism)</term>
<term>Cyclic AMP-Dependent Protein Kinases (metabolism)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Intracellular Space (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Microbial Viability (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sphingolipids (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Vacuoles (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Cyclic AMP-Dependent Protein Kinases (métabolisme)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Vacuoles (métabolisme)</term>
<term>Viabilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acids</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Multiprotein Complexes</term>
<term>Reactive Oxygen Species</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sphingolipids</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Space</term>
<term>Mitochondria</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides</term>
<term>Complexes multiprotéiques</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Espace intracellulaire</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Mitochondries</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Sphingolipides</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Homeostasis</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Microbial Viability</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Homéostasie</term>
<term>Transduction du signal</term>
<term>Viabilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reactive oxygen species (ROS) are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2)/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24462291</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2211-1247</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Cell reports</Title>
<ISOAbbreviation>Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation.</ArticleTitle>
<Pagination>
<MedlinePgn>541-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.celrep.2013.12.040</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S2211-1247(13)00798-5</ELocationID>
<Abstract>
<AbstractText>Reactive oxygen species (ROS) are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2)/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.</AbstractText>
<CopyrightInformation>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niles</LastName>
<ForeName>Brad J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Joslin</LastName>
<ForeName>Amelia C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fresques</LastName>
<ForeName>Tara</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA. Electronic address: tpowers@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM086387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM086387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Rep</MedlineTA>
<NlmUniqueID>101573691</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000143">Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.1</RegistryNumber>
<NameOfSubstance UI="C068124">MCK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Cell Rep. 2014 Feb 13;6(3):592</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000143" MajorTopicYN="N">Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24462291</ArticleId>
<ArticleId IdType="pii">S2211-1247(13)00798-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.celrep.2013.12.040</ArticleId>
<ArticleId IdType="pmc">PMC3985744</ArticleId>
<ArticleId IdType="mid">NIHMS552814</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Health Perspect. 1994 Dec;102 Suppl 10:5-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7705305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jun 1;30(11):2101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1991 Feb 1;51(3):794-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cell Biol. 2010;11:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21108829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1997 Nov 28;381(2):251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9434881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(4):619-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Sep;26(17):6487-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jul;1791(7):628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19254779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Aug;173(4):1909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Feb;7(2):148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):46527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Feb 25;9(4):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 1;278(31):28872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Feb;3(2):94-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 9;282(10):7125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 May;14(5):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Dec;6(12):971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Jul 1;22(13):2360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 May 13;269(19):14064-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Aug;188(4):859-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Feb 23;439(7079):998-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:149-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1706458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Jan;236(2-3):443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8437590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Sep;180(17):4460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9721283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 1;24(13):2519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2013 Jun 27;32(26):3147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Jun 15;380(Pt 3):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Feb 15;34(4):478-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Sep;13(9):3162-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Dec;17(6):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 1;275(35):27393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Dec 15;67(24):11712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18089801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Dec;86(5):1246-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23062268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Apr 1;16(7):1710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9130715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2012 Jun 20;2:64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22737670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Sep 10;15(5):767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15350220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):7027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2674942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e17619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423800</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Niles, Brad J" sort="Niles, Brad J" uniqKey="Niles B" first="Brad J" last="Niles">Brad J. Niles</name>
</region>
<name sortKey="Fresques, Tara" sort="Fresques, Tara" uniqKey="Fresques T" first="Tara" last="Fresques">Tara Fresques</name>
<name sortKey="Joslin, Amelia C" sort="Joslin, Amelia C" uniqKey="Joslin A" first="Amelia C" last="Joslin">Amelia C. Joslin</name>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24462291
   |texte=   TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24462291" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020